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We study the effect of mechanical boundary conditions on the phase separation of elastically coupled binary
alloys. Two distinct boundary conditions are considered; clamped boundaries in which there is no macroscopic
shape change and traction free boundaries where a net shape change of the grains is possible. In particular, we
are interested in system size effects and its relation to the boundary conditions. For clamped boundary condi-
tions, we find that there exists a critical size below which no phase separation is possible. It is found that the
miscibility gap depends on the system size for such cases. On the other hand, for traction free boundary
conditions, no critical size is observed and the miscibility gap is independent of the system size. We also
observe contrasting processes in the kinetics of phase separation for the two different boundary conditions. The
stark contrast in behavior serves to underscore the sensitive dependence of elastic interactions on boundary
conditions and geometry. These findings are relevant for polycrystalline alloys with nanosized grains where the
clamped case serves as a simple model for a single grain, embedded deep in a polycrystal, constrained by its
surrounding grains.
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I. INTRODUCTION

Phase transitions in binary alloys can be dramatically in-
fluenced by elastic interactions.1–7 Cahn1 showed that elas-
ticity can shift the miscibility gap by a constant temperature,
Onuki3 performed computer simulations of domain patterns
influenced by elasticity and Orlikowski5 showed particular
morphologies that were adopted because of selection criteria
based on shear moduli and average alloy composition. For
example, the patterns formed by spinodal decomposition in a
cubic system favor either the �111� or the �100� planes when
inequalities involving the elastic moduli are satisfied.2 The
elastic interaction is long ranged and hence is sensitive to
shape and composition distribution8,9 and boundary condi-
tions. Its interplay with the short-range diffusion of compo-
sition is primarily responsible for the phenomena described
above.

However, the above studies consider systems in the bulk
where periodic boundary conditions may be used. Simula-
tions that use periodic boundary conditions are not suitable
to describe nanoscale systems since surface effects are ne-
glected. There is much current interest in phase transforma-
tions in materials with nanosized grains. For example in bi-
nary alloys the competition between surface and bulk
energies can give rise to a critical size below which no phase
separation occurs. These surface-tension effects have been
studied to some degree by Christensen10 and Shirinyan.11

However, in addition to surface tension, elastic coupling to-
gether with mechanical constraints can have an effect on
critical size. Each grain in a polycrystalline alloy is also me-
chanically constrained by the surrounding grains and hence
the grains cannot be stress free. In this instance, periodic
boundary conditions are no longer apt to describe their be-
havior since mechanical boundary conditions need to speci-

fied at the boundary. The effect of mechanical constraints on
phase transformations has been studied in the context of fer-
roelastics by Jacobs;12,13 it was predicted that the transforma-
tion temperature and the order parameter, for a clamped sys-
tem, is suppressed from the bulk value as the grain size
decreases. Our aim in this paper is to investigate if a similar
effect exists for diffusive phase transitions, such as phase
separation in binary alloys.

Unlike the ferroelastic case,12,13 where the mechanical
constraints directly influence the order parameter �strain�,
mechanical constraints in the case of binary alloys indirectly
influence the phase transformation through the coupling be-
tween the elastic strains and the composition order param-
eter. Thus it is interesting to study how the indirect coupling
together with the mechanical constraints influence the size
effects in the phase separation of binary alloys. It is also
important to study how the kinetics changes with the me-
chanical boundary conditions.

In this paper, we report on two-dimensional simulations
carried out with two nonperiodic boundary conditions:
boundaries that are traction free; displacements clamped at
the boundaries. In Sec. II, we describe our model along with
the relevant boundary conditions. In Sec. III, the role of
boundary conditions on domain patterns as well as size ef-
fects are discussed for clamped as well as the traction free
conditions. Here, we also discuss the kinetics of the phase
separation. Section IV ends the paper with a summary and
discussion of the results.

II. MODEL

We use the Ginzburg-Landau theory to study the phase
separation of binary alloys,1–6 with an order parameter, �,
which represents the local composition. This is a lowest-
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order expansion of the free energy that respects symmetry
and describes the phase separating behavior.

The free energy in the constrained elastic system can be
modeled as3,4

F =� dr� f��� +
k�

2
����2 + fel� , �1�

where f��� is the Ginzburg-Landau free energy for the order
parameter �. The order parameter represents the difference
between local concentrations of the two constituent compo-
nents in the alloy. The second term,

k�

2 ����2, is a gradient
energy attributed to surface tension1,14 and fel is the elastic
energy of the system which is composition dependent. f���
can be written in the usual form

f��� =
a0

2

T − Tc

Tc
�2 +

1

4
a4�4, �2�

where
T−Tc

Tc
=� is the scaled temperature and a0 and a4 are

positive phenomenological constants. The choice of these de-
pends on the material. We write the elastic energy for the
cubic system, fel, in the form

fel =
C11

2
���xx − ���2 + ��yy − ���2	

+ C12��xx − �����yy − ��� + C44�xy
2 . �3�

Here we introduce coupling between the strains, �, and the
order parameter, �, by allowing the effective strains to be
altered by the order parameter accounting for lattice mis-
match between the two components. For a stress free system,
positive � results in extension and negative � results in com-
pression in order to minimize energy. � describes the cou-
pling strength and parameterizes the lattice mismatch. We
note that the elastic coupling is expressed in a slightly dif-
ferent form from Refs. 4 and 6, though from a symmetry
point of view they are identical. In fact, a similar form has
been used in the literature.7,15 The advantage of this form for
the elastic coupling is it does not renormalize the transition
temperature for a stress free system.

The kinetics of the phase-separation process can be de-
scribed by coupled equations for the order parameter and the
displacements. The evolution of the order parameter can be
described by the Cahn-Hilliard equation1

��

�t
= ��2 �F

��
, �4�

where � is the mobility. This conserves the order parameter,
�, and typifies the diffusive interaction and propagation of
the composition through space. The evolution of the dis-
placements can be described as

�
�2ui

�t2 = 

j

��ij

�rj
+ 	�2vi, �5�

�ij =
�F

��ij
, �6�

where � is the density, �ij is the stress tensor and v is the
velocity. 	 describes the viscosity of the viscous damping
term. This equation describes the condition of force balance,
also incorporating for the viscous damping in the solid. We
remark that unlike previous approaches which assume me-
chanical equilibrium to hold everywhere, at all times, in our
approach, the above equation describes the kinetics of the
displacements. The advantage of this method is that it is
natural to do calculations in real space and hence nonperi-
odic boundary conditions are easier to implement.

We perform simulations of the above model using a
simple central difference in space and an euler difference in
time to approximate the differentials. Since we are only in-
terested in qualitative results we choose simple values for the
parameters: a0=1, a4=1, k�=2, C11=2, C12=1, C44=4, 	
=10, and �=1. The phase separating behavior is strongly
dependent on the coupling constant, �, so we choose a rep-
resentative value of the coupling constant �=0.7. The simu-
lations were conducted on a two-dimensional square lattice.
The step sizes in the finite differences were �x=�y=1 and
�t=0.01. We investigated two types of mechanical boundary
conditions. Surface boundary conditions on the order param-
eter were common to both types of boundary conditions.
This surface boundary condition on the order parameter was

�ni�i��
s
= 0; ni�i��F

��
�

s
= 0, �7�

where ni is the in-plane vector normal to the surface at the
boundaries and s is the boundary of the system. These stipu-
late that there is no surface energy from the order parameter
gradients at the boundary and no current entering or leaving
the surface. This allows us to isolate the mechanical effects
in the system.

First we implemented traction free boundary conditions
where in addition to the order parameter and current depen-
dent boundary conditions in Eq. �7�, we stipulate that the
tractions at the boundaries go to zero. This can be expressed
as

�ijnj = 0. �8�

Vanishing stresses at the boundary allow and induce the sys-
tem to change its geometry when minimizing the free energy.

Second we used a boundary condition where the displace-
ments were clamped �in addition to Eq. �7�	. The clamped
boundary conditions are

�ui�
s
= 0; �vi�

s
= 0. �9�

These clamp the displacements and consequently the veloci-
ties. Here, the system is fixed in place and displacements are
only allowed within the surface. This means that the total
volume in the systems remains constant in contrast to the
traction free boundary conditions. The clamped boundary
conditions also fix the shape of the system.
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III. SIMULATIONS OF DOMAIN PATTERNS

We numerically integrate Eqs. �4� and �5� without thermal
noise with the boundary conditions detailed above. We ini-
tialized the system with a random noise about zero in dis-
placements and order parameter, �. Each simulation was
evolved till equilibration where the maximum order param-
eter in the system had saturated and the velocities had van-
ished to zero.

A. Traction free boundary conditions

For the case of traction free boundary conditions, we ob-
serve phase separation for all sizes simulated. The phase
separated states for �=−1 are depicted in Fig. 1. We observe
that with these boundary conditions, the system decomposes
to just two domains of opposite order parameter. However,
the order parameter within each domain is not homogeneous,
and there exist fluctuations due to inhomogeneous distribu-
tions of the strain which arise due to geometrical constraints
imposed by the shape of the system. The domain pattern
does not change with size and an almost perfectly phase
separated state with just one domain wall is observed for all
sizes. The cubic symmetries imposed by the elastic moduli
chosen are almost respected and a �100� plane is selected
because 2C44−C11+C12
0 �Ref. 2� for the parameters used.
Using the configurations shown in Fig. 1 as the initial con-
ditions at �=−1, we simulate the dynamical equations at dif-
ferent temperatures to test the stability of the phase separated
states. A miscibility curve obtained by calculating the maxi-
mum and the minimum values of the order parameter at dif-
ferent temperatures is shown in Fig. 2. The curves do not
show a significant shift with size and take on a shape similar
to the one expected for the homogeneous case. We expect
this because of the vanishing stresses at the boundaries
which allow the system and domains therein to move and
change to give the lowest energy configuration and decom-
pose fully.

An interesting observation we make from both Fig. 1 and
2 is that the maximum absolute order parameter at �=−1 is
greater than one. Since there is no current out of and into the
system and total number of particles of both components in
the alloy should stay the same. Thus a value of ���
1 ap-
pears to violate the order-parameter conservation. To under-
stand this apparent inconsistency, we analyze the definition
of the order parameter �= �na−nb� / �na+nb�. In an undis-
torted lattice, the quantity na+nb=Nav, where Nav is the total
number of atoms in a coarse-grained element. This is the
same for each element in the homogenous lattice. In most
implementations, as in ours, the definition of the order pa-
rameter becomes �= �na−nb� /Nav where Nav is fixed for each
element by stipulating a constant overall order parameter and
a constant grid size, �x�y. In a distorted lattice, however,
local volume changes allow for na+nb�Nav. In particular,
na+nb may be more than Nav in a given local region of the
space which can result in ���
1. Due to the overall conser-
vation of the order parameter, this results in an inhomoge-
neous distribution in the order parameter that can be clearly
seen in Fig. 1. This is solely due to the distorting strains
allowed for by the traction free boundary conditions that

induce local volume changes. We note that this also means
that the initial square shape of the system is no longer pre-
served and a different shape is chosen which helps minimize
energy. This allows the system additional degrees of free-
dom, not afforded by the boundary conditions described be-
low, that permit this clear two-phase domain pattern in Fig.
1. We repeated these simulations with different values of �
and the compositional inhomogeneities decrease at lower
values of �. At �=0, perfectly homogeneous phase separa-
tion is observed.
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FIG. 1. �Color online� Plots of spinodal decomposed binary al-
loys at �=−1 for varying sizes using traction free boundary condi-
tions. The panels are �a� 200�200 lattice, �b� 100�100 lattice, �c�
50�50 lattice, and �d� 20�20 lattice. We note that there are com-
positional fluctuations within the same domain. The 200�200 lat-
tice was simulated to 1.5�105 units in time. The rest were simu-
lated to 1.0�105 units in time.
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B. Clamped boundary conditions

We obtained the domain patterns as well as the miscibility
curves for the clamped case, using the same procedure as
above. Figure 3 shows the converged patterns for different
sizes. Notice the significant changes in the domain patterns
where the number of two phase domains decrease with size
from the largest size �200�200� to the smallest size �20
�20� where no decomposition occurs. Thus there exists a
critical size below which no phase separation occurs. For the
present set of parameters, this critical size was determined to
be 35�35. This is in stark contrast to the phase separation
that is allowed even for a 20�20 system for the traction free
boundary conditions. This difference clearly points to the
change in mechanical boundary conditions, namely the
clamping, as the culprit for this size effect. Obviously, this
critical size is nonuniversal and depends on the coupling
constant, �, and elastic moduli chosen. However, other con-
stants such as the viscosity, density, and mobility are not
expected to change this as they only contribute to the kinet-
ics.

The choice of elastic moduli constrains the domains to
form in the �100� planes and this is respected here as well.
The boundaries between saturated compositions are not very
pronounced and we find that the profiles are in fact sinu-
soidal along a given direction in the system.

We note that near the boundaries, we observe curved do-
main walls. This was also observed in the context of
ferroelastics.12,13,16 We believe that this is happening due to
the shear strains that arise due to the clamping effects at the
boundary. Therefore, the domain walls can deviate from the
usual �100� planes.

A remarkable result in the clamped systems is the de-
creased value of the local composition within the phase sepa-
rated domains. We can observe from Fig. 3 that the local
composition appears to decrease with the system size until
below the critical size, no phase separation occurs. To further

clarify this behavior, we obtained the miscibility curves for
this case at different sizes using the same procedure that was
used to calculate the miscibility curves for the traction free
case. The miscibility curves at three different sizes are shown
in Fig. 4. The miscibility gap in Fig. 4 exhibits a size depen-
dent shift in the critical temperature. The saturated composi-
tions also decrease with size. One can see that for lower sizes
the miscibility gap shrinks toward the abscissa. Eventually,
this shrinks till it is level with the abscissa and no phase
separation is observed as for the 20�20 lattice in Fig. 3.
Here, Fig. 4, we show a cross over from the two-phase to the
single phase. We plot the maximum “saturated” phases in the
time simulated. We find that the transition to the one-phase
region is not sharp and instead there is a cross over behavior.
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FIG. 2. �Color online� Miscibility gap for traction free boundary
conditions with varying system sizes denoted by � 200�200
�black�, � 100�100 �red�, and � 50�50 �blue�. This is plotted
using the maximum and minimum order-parameter values in the
whole system.
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FIG. 3. �Color online� Plots of spinodal decomposed binary al-
loys at �=−1 for varying sizes using clamped boundary conditions.
The panels are �a� 200�200 lattice, �b� 100�100 lattice, �c� 50
�50 lattice, and �d� 20�20 lattice. The number of allowed do-
mains decreases with size until there is no phase separation at the
20�20 lattice. All plots were simulated to 1.0�105 units in time.
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We believe that this is due to the metastability of the two-
phase state that is induced by the elastic interactions and the
clamping.

We now discuss the physical mechanism of the size effect
we observe. A well-known explanation for the existence of
critical sizes in-phase transitions is the competition between
the surface and the bulk energies. These account for the ef-
fects seen in Ref. 10. However, in the present paper, by vir-
tue of boundary conditions in Eq. �7�, the surface energy of
the free or clamped surface is not taken into account. For the
traction free case, no critical size was observed due to the
fact that there was no surface energy associated with the
system nor were there clamped boundaries. This suggests
that the size effect is a result of the mechanical clamping and
the elastic interactions. In particular, it is a competition be-
tween the gradient energy and the elastic energy and clamp-
ing. Unlike the traction free case, phase separation with only
two domains cannot be observed since such a domain pattern
cannot maintain the clamped boundary conditions. Clamping
forces the introduction of additional domain walls compared
to the traction free case to accommodate the constant shape
and size of the system. This results in additional gradient
energy which is mitigated by the lowering of saturated com-
position in each domain. Thus we see that the clamping re-
sults in an incomplete phase separation within the phase
separated region. This also explains the difference between
the saturated compositions of the traction free and the
clamped cases, for say 100�100 system from comparing
Figs. 2 and 4.

As we decrease the size of the clamped system we find
that the characteristic domain size decreases as well. The
smaller the domain size, the greater the gradient energy den-
sity. In fact, we expect the gradient energy density cost to go
as 1 /r, where r is the characteristic size of the domains
within a given system. As a result of the smaller domain
sizes, the saturated compositions decrease so as to lower the
gradient energy of the composition. Together with smaller
domain sizes for smaller systems, this results in the size de-

pendence of the miscibility gaps of Fig. 4. Hence, we find
that the degree of phase separation decreases with size. Be-
yond a certain critical size, in our case a 35�35 system, the
energy cost of creating such small domains becomes so high
that phase separation does not occur at all. Thus we have a
critical size purely from mechanical constraints. We expect
this effect to become more pronounced as we increase the
coupling constant. It should be noted that this effect occurs
indirectly through a clamping of the displacements. The
compositions at the boundaries are not prespecified and
evolve only according to energy minimization.

The shift in the critical temperature we observe and
Cahn’s constant shift,1 although both due to elastic interac-
tions, are qualitatively different. We observe a size depen-
dence in the temperature shift. This size effect is unexpected
from just a simple consideration of the change in the coeffi-
cient of �2 term in the total free energy when we add in the
elastic energy. The size dependence that we have observed is
a result of the explicit clamping of the displacements at the
boundaries.

It should be noted that as we increase the size we expect
that the clamping at the surface becomes less important. We
believe that as the system size becomes very large, we expect
it not to feel the clamping effect far from the boundaries and
the system should behave very much like a bulk stress free
system. We already observe in Fig. 4 the miscibility gap
shifting out with increasing size. This should approach the
theoretical miscibility curve for a homogeneous system as
L→�.

We repeated these simulations for different values of the
coupling constant, �. The phase separation is suppressed for
all nonzero values of �, although for very small values of �
the change in the miscibility curve with size is less pro-
nounced. For �=0 the miscibility curve is the same as that
one would expect from the analytic solution for homoge-
neous case. This is due to the decoupling of the elasticity
from the composition at �=0.

C. Kinetics

In Secs. I and II we showed the converged domain pat-
terns. However, it is also of interest to examine and compare
the kinetics for the different boundary conditions. There are
qualitative differences in the kinetics for the two boundary
conditions. Apart from the different final phase separated
states, the time taken to reach this state is an order of mag-
nitude longer for the traction free boundary conditions as
compared to the clamped boundary conditions. This is due to
the fact that the traction free case is dominated by long-range
diffusion since the phase separated domains are coarsening.
For the clamped case, the diffusion is short range. The
clamped case selects a characteristic domain size very
quickly, after which the kinetics is governed by the motion of
interfaces between different orientations of the lamellar do-
mains. Figures 5 and 6 show that the route to the final phase
separated states with the two different boundary condition is
different where contrasting processes play a role in the dy-
namics.
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FIG. 4. �Color online� Miscibility gap for clamped boundary
conditions with varying system sizes denoted by � 200�200
�black�, � 100�100 �red�, and � 40�40 �blue�.
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First we note that, at small times for the traction free
boundary condition �Fig. 5�, phase separation initiates at the
boundaries. This is in sharp contrast to the phase separation
which occurs homogeneously at small times for the clamped

boundary conditions �Fig. 6�. It is clear that this results from
the differences in the mechanical boundary conditions. We
also see, in agreement with the previous discussion, that in
the clamped case once a domain is formed it does not
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FIG. 5. �Color online� Evolution of spinodal decomposition of a 200�200 lattice with traction free boundary conditions. The panels are
�a� 4�102, �b� 1�103, �c� 3�103, �d� 6�103, �e� 3�104, and �f� 1.5�105 units in time.

JUSTIN C. W. SONG AND RAJEEV AHLUWALIA PHYSICAL REVIEW B 78, 064204 �2008�

064204-6



coarsen significantly in contrast to the traction free case
where the domains coarsen to achieve complete phase sepa-
ration.

In Fig. 5, after initial phase separation at the boundaries,
the phase separated domains work their way inwards to form

larger domains. The domain boundaries become more dis-
tinct. We note that the cubic symmetries are respected during
the growth. After this, the domains start to merge to form
larger domains to get to the two domain phase separated state
we see in the last panel of Fig. 5. This part of the process
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FIG. 6. �Color online� Evolution of spinodal decomposition of a 200�200 lattice with clamped boundary conditions. The panels are �a�
2�102, �b� 6�102, �c� 2�103, �d� 6�103, �e� 1.2�104, and �f� 2�104 units in time.
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takes the longest time because the movement of domain
boundaries occurs through a slow long-range diffusion pro-
cess.

In Fig. 6, after decomposing with small fluctuations ev-
erywhere in the system, the fluctuations get amplified1,2 and
take on domain-wall orientations imposed by cubic symme-
tries in the system. As discussed earlier, the system very
quickly selects a characteristic domain size and thereafter the
kinetics is governed by the motion of interfaces between dif-
ferent lamellar orientations. Eventually it prefers to have just
one set of planes allowed by the symmetries as this configu-
ration minimizes the free energy subject to the boundary
conditions. We note that this is the slowest part of the pro-
cess. However, this is soon arrested, and the microstructure
settles to a configuration �that may be metastable� much ear-
lier than the long-time limit pattern of two domains that the
traction free case adopts.

IV. CONCLUSIONS

We have studied phase separation in binary alloys with
elastic interactions, focusing on the role of mechanical
boundary conditions and size effects. Unlike previous ap-
proaches which use explicit long-range interactions in terms
of the order parameter, we use an approach where kinetics of
the displacements is evolved in time along with the order

parameter. This is the natural framework for which real-
space boundary conditions such as the traction free and
clamped are to be implemented. We simulated phase separa-
tion at different system sizes for both the traction free as well
as the clamped boundary conditions. We show that while for
the traction free case, the phase separation can occur even at
very small sizes, for the clamped case, a critical size exists
below which no phase separation is observed. Since by the
virtue of boundary conditions, the surface energy has been
ignored in the present work, the critical size exists purely due
to the constraints imposed by the mechanical clamping. We
have also studied the kinetics of phase separation for the
traction free as well as the clamped boundary conditions and
find that the kinetics is slower in the former. We believe that
these results have relevance for polycrystalline binary alloys
with grain sizes of the order of a few nanometers. Of course,
real grains in a polycrystal are somewhat intermediate be-
tween the two boundary conditions discussed in the present
paper, nevertheless the grains will be constrained and cannot
be completely stress free. Thus we believe that a critical size
for phase separation due to mechanical constraints can in-
deed exist in binary alloys with nanosized grains where elas-
tic interactions are important.
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